## Tuesday, December 23, 2014

### UVa Problem 124 - Following Orders

Problem:

Solution:

The problem ask for all topological orders, by modifying the standard (not so efficient) version of topological sorting, we can solve the problem.

Recall that the topological sort work this way.

Step 1: Pick a node with no incoming links
Step 2: Remove that node
Go to step 1.

Simple as that, in order for the algorithm to output all order, the problem is that with picking, instead of picking one, we need to make sure we back track and pick all.

The easiest way I can think of to do back tracking is to do it recursively, so we have something like

function topo(graph, result)
{
if (there is no node with no indegree)
{
print result;
return;
}
foreach (node with no indegree in graph)
{
result.append(node);
graph.remove(node)
topo(graph, result)
}
}

To make this efficient, I used a separate set to maintain the set of all nodes with no indegree to avoid checking all nodes.

Code:

#include "stdafx.h"

// http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=60

#include "UVa124.h"

#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <algorithm>

using namespace std;

void UVa124_recursive(set<int>& free, vector<int>& indegree, vector<char>& variables, vector<set<int> >& adjacency_list, vector<int>& result);

int UVa124()
{
int test_case_number = 0;
while (true)
{
test_case_number++;
string line;
getline(cin, line);
if (cin.eof())
{
break;
}
istringstream iss1(line);

vector<char> variables;
map<char, int> numberings;

while (true)
{
char c;
iss1 >> c;
if (iss1.eof()){
break;
}
variables.push_back(c);
}

sort(variables.begin(), variables.end());
for (unsigned int i = 0; i < variables.size(); i++)
{
numberings.insert(pair<char, int>(variables[i], i));
}

int number_of_nodes = variables.size();

getline(cin, line);
istringstream iss2(line);
while (true)
{
char b, l;
iss2 >> b >> l;
if (iss2.eof()){
break;
}
}

// Step 2: All topological sort orders
vector<int> indegree;
set<int> free;
indegree.resize(number_of_nodes);

for (int i = 0; i < number_of_nodes; i++)
{
indegree[i] = 0;
}

for (int i = 0; i < number_of_nodes; i++)
{
{
indegree[*ai]++;
}
}

for (int i = 0; i < number_of_nodes; i++)
{
if (indegree[i] == 0)
{
free.insert(i);
}
}

vector<int> result;

if (test_case_number != 1)
{
cout << endl;
}

}

return 0;
}

void UVa124_recursive(set<int>& free, vector<int>& indegree, vector<char>& variables, vector<set<int> >& adjacency_list, vector<int>& result)
{
vector<int> clone;
for (set<int>::iterator fi = free.begin(); fi != free.end(); fi++)
{
clone.push_back(*fi);
}
if (clone.size() == 0)
{
bool first = true;
for (vector<int>::iterator ri = result.begin(); ri != result.end(); ri++)
{
cout << variables[*ri];
}
cout << endl;
}
for (vector<int>::iterator ci = clone.begin(); ci != clone.end(); ci++)
{
int v = *ci;
result.push_back(v);
free.erase(v);

{
int neighbor = *ai;
indegree[neighbor]--;
if (indegree[neighbor] == 0)
{
free.insert(neighbor);
}
}

{
int neighbor = *ai;
if (indegree[neighbor] == 0)
{
free.erase(neighbor);
}
indegree[neighbor]++;
}

free.insert(v);
result.erase(result.end() - 1);
}
}